Physics – Grade 10

Prepared & Presented by: Mr. Mohamad Seif

Think then Solve

A puck (B) is launched up air table with initial velocity

vector \vec{V}_0 of magnitude $V_0 = 5m/s$.

The time constant between two consecutive dots is $\tau = 100ms$.

- 1.Indicate with justification the trajectory described by the motion of the puck.
- 2. Determine the average speed between B_1 and B_5 .

- Be Smart ACADEMY
- 3. Calculate the instantaneous speeds V_1 , V_3 and V_5 at B_1 , B_3 and B_5 respectively.
- 4. Determine the average acceleration between B_1 & B_3 ; B_3 & B_5 ;
- 5. Calculate the instantaneous acceleration a_2 , a_4 at B_2 and B_4 respectively.
- 6.Deduce the nature of motion.
- 7. Give the characteristics of the acceleration vector at B_2 .

 $V_0 = \frac{5m}{s}$; $\tau = 100ms \div 1000 = 0.1s$.

1.Indicate with justification the trajectory described by the motion of the puck.

The trajectory of motion is rectilinear (St. line), because the points are collinear.

$V_0 = 5m/s$; $\tau = 100ms \div 1000 = 0.1s$.

2. Determine the average speed between B_1 and B_5 .

$$B_0$$
 47.5cm B_1 42.5cm $B_{237.5cm}B_3$ B_3 B_4 B_5 B_6 χ

$$V_{1,5} = \frac{B_1 B_5}{t_5 - t_1} \quad \Rightarrow \quad V_{1,5} = \frac{B_1 B_2 + B_2 B_3 + B_3 B_4 + B_4 B_5}{5\tau - \tau}$$

$$V_{1,5} = \frac{(42.5 + 37.5 + 32.5 + 27.5) \times 10^{-2}}{4\tau} \qquad V_{1,5} = \frac{140 \times 10^{-2}}{4 \times 0.1}$$

$$V_{1.5} = 3.5 \text{m/s}$$

$V_0 = 5m/s; \tau = 0.1s.$

3. Calculate the instantaneous speeds V_1 , V_3 and V_5 at B_1 , B_3 and B_5 respectively.

$$B_0$$
 47.5cm B_1 42.5cm $B_{237.5cm}B_3$ B_3 B_4 B_5 B_6 χ

$$V_1 = \frac{B_0 B_2}{t_2 - t_0}$$

$$V_1 = \frac{B_0 B_2}{2\tau - 0}$$

$$\frac{6 V_1 = \frac{(47.5 + 42.5) \times 10^{-2}}{2\tau}$$

$$V_1 = \frac{90 \times 10^{-5}}{2 \times 0.1}$$
 $V_1 = 4.5m/s$

$V_0 = 5m/s; \tau = 0.1s.$

3. Calculate the instantaneous speeds V_1 , V_3 and V_5 at B_1 , B_3 and B_5 respectively.

Be Smart ACADEMY

$V_0 = 5m/s; \tau = 0.1s.$

3. Calculate the instantaneous speeds V_1 , V_3 and V_5 at B_1 , B_3 and B_5 respectively.

$$V_{5} = \frac{B_{4}B_{6}}{t_{6} - t_{4}}$$

$$V_{5} = \frac{B_{4}B_{6}}{c_{5} - t_{4}}$$

$$V_{5} = \frac{50 \times 10^{-2}}{27}$$

$$V_{5} = \frac{50 \times 10^{-2}}{27}$$

4.Determine the average acceleration between B_1 & B_3 ; B_3 & B_5

$$a_{1,3} = \frac{V_3 - V_1}{t_3 - t_1}$$

$$a_{1,3} = \frac{3.5 - 4.5}{2\tau}$$

$$a_{1,3}=-5m/s^2$$

4. Determine the average acceleration between B_1 & B_3 ; B_3 & B_5

$$a_{3,5} = \frac{V_5 - V_3}{t_5 - t_3}$$

$$a_{3,5} = \frac{2.5 - 3.5}{2\tau}$$

$$a_{3,5} = \frac{-1}{2 \times 0.1}$$

$$DEMY$$

$$a_{3,5} = -5m / s^2$$

$$V_0 = \frac{5m}{s}; \tau = 0.1s; V_1 = 4.5m/s; V_3 = 3.5m/s; V_5 = 2.5m/s$$

5. Calculate the instantaneous acceleration a_2 , a_4 at B_2 and B_4 respectively.

$$\mathbf{a}_2 = \frac{V_3 - V_1}{t_3 - t_1}$$

$$a_2 = \frac{3.5 - 4.5}{3\tau - \tau}$$

$$a_2 = \frac{-1}{2 \times 0.1}$$

$$\mathbf{a_2} = -5m / s^2$$

$$\mathbf{a_4} = \frac{V_5 - V_3}{t_5 - t_3}$$

$$a_4 = \frac{2.5 - 3.5}{57 - 37}$$

$$a_4 = \frac{-1}{2 \times 0.1}$$

$$\mathbf{a_4} = -5m / s^2$$

6.Deduce the nature of motion.

Since
$$a_2 = a_4 = a = -5m/s^2 < 0$$
 the motion is decelerated motion

7. Give the characteristics of the acceleration vector at B_2 .

$$B_0$$
 B_1 a_2 B_2 B_3 B_4 B_5 B_6 x

Origin: B_2

Line of action: Horizontal

Direction: To Left

Magnitude: $a_2 = -5 \, m/s^2$
 $x = \frac{1 \, cm \times 5}{2.5} \approx 2 \, cm$

Physics – Grade 10

Prepared & Presented by: Mr. Mohamad Seif

Think then Solve

The figure shows the recording of the successive positions of a puck M on an inclined air table.

- The time interval separating two successive points is $\tau = 40 \text{ms}$.
- 1.Indicate with justification the trajectory described by the motion of the puck.
- 2.Determine the average speeds $V_{1,7}$ and $V_{5,7}$ between: $M_1 \& M_7$, and between $M_5 \& M_7$.

- M₆

 Be Smart ACADEMY

 M₇ χ
- 3. Determine the instantaneous speed of the puck V_2 , V_4 and V_6 at the points M_2 , M_4 and M_6 .
- 4.Determine the characteristics of instantaneous velocity at M_4 Scale: $1cm \rightarrow 0.25 \, m/s$
- 5.Determine the average acceleration $a_{1,3}$ and $a_{3,5}$ between $M_1 \& M_3$ and between $M_3 \& M_5$.
- 6. Calculate the instantaneous acceleration a_3 , a_5 at M_3 and M_5 respectively.

$$\tau = 40ms \div 1000 = 0.04s; M_0M_1 = M_1M_2 = \cdots = 3cm$$

1.Indicate with justification the trajectory described by the motion of the puck.

The trajectory of the puck M is rectilinear, because the line joining the points from M_0 to M_7 is straight line

$\tau = 0.04s$; $M_0M_1 = M_1M_2 = \cdots = 3cm$

2. Determine the average speeds $V_{1,7}$ and $V_{5,7}$ between: $M_1 \& M_7$, and between $M_5 \& M_7$

$$M_0$$
 3cm M_1 M_2 M_3 M_4 M_5 M_6 M_7 χ

$$V_{1,7} = \frac{M_1 M_7}{t_7 - t_1} \implies V_{1,7} = \frac{M_1 M_7}{7\tau - \tau} \implies V_{1,7} = \frac{M_1 M_7}{6\tau}$$

$$V_{1,7} = \frac{(6 \times 3) \times 10^{-2}}{6 \times 0.04}$$

 $V_{1,7} = 0.75 \text{m} / \text{s}$

$\tau = 0.04s$; $M_0M_1 = M_1M_2 = \cdots = 3cm$

2. Determine the average speeds $V_{1,7}$ and $V_{5,7}$ between: $M_1 \& M_7$, and between $M_5 \& M_7$

$$M_0$$
 3cm M_1 M_2 M_3 M_4 M_5 M_6 M_7 χ

$$V_{5,7} = \frac{M_5 M_7}{t_7 - t_5}$$
 $V_{5,7} = \frac{M_5 M_7}{7\tau - 5\tau}$ $V_{5,7} = \frac{M_5 M_7}{2\tau}$

$$V_{5,7} = \frac{(3+3)\times 10^{-2}}{2\times 0.04}$$

 $V_{5,7} = 0.75 \text{m} / \text{s}$

$\tau = 0.04s$; $M_0M_1 = M_1M_2 = \cdots = 3cm$

3.Determine the instantaneous speed of the puck V_2 , V_4 and V_6 at the points M_2 , M_4 and M_6

$$M_0$$
 3cm M_1 M_2 M_3 M_4 M_5 M_6 M_7 χ

$$V_2 = \frac{M_1 M_3}{t_3 - t_1}$$
 $V_2 = \frac{M_1 M_3}{3\tau - \tau}$ $V_2 = \frac{M_1 M_3}{2\tau}$

$$V_2 = \frac{6 \times 10^{-2}}{2 \times 0.04}$$

$$V_2 = 0.75m/s$$

$\tau = 0.04s$; $M_0M_1 = M_1M_2 = \cdots = 3cm$

3.Determine the instantaneous speed of the puck V_2 , V_4 and V_6 at the points M_2 , M_4 and M_6 .

$$M_0$$
 3cm M_1 M_2 M_3 M_4 M_5 M_6 M_7 χ

$$V_4 = \frac{M_3 M_5}{t_5 - t_3} \qquad V_4 = \frac{M_3 M_5}{5\tau - 3\tau} \qquad V_4 = \frac{M_3 M_5}{2\tau}$$

$$V_4 = \frac{6 \times 10^{-2}}{2 \times 0.04}$$

$$V_4 = 0.75m/s$$

$\tau = 0.04s$; $M_0M_1 = M_1M_2 = \cdots = 3cm$

3.Determine the instantaneous speed of the puck V_2 , V_4 and V_6 at the points M_2 , M_4 and M_6 .

$$M_0$$
 3cm M_1 M_2 M_3 M_4 M_5 M_6 M_7 χ

$$V_6 = \frac{M_5 M_7}{t_7 - t_5} \qquad \qquad V_6 = \frac{M_5 M_7}{7\tau - 5\tau} \qquad \qquad V_6 = \frac{M_5 M_7}{2\tau}$$

$$V_6 = \frac{6 \times 10^{-2}}{2 \times 0.04}$$

$$V_6 = 0.75m / s$$

$$\tau = 0.04s$$
; $V_2 = V_4 = V_6 = 0.75m/s$

4.Determine the characteristics of instantaneous velocity at M_4 . Scale: $1cm \rightarrow 0.25 \, m/s$

M_0 3cm M_1	M_2	M_3	$M_4 \overrightarrow{\mathbf{V}_4}$	M_5	M_6	$M_{7} x$
			_			

Origin:	point M ₄			
Line of action:	Horizontal			
Direction:	To the Right			
Magnitude:	$V_4 = 0.75m/s$			

$$1cm \rightarrow 0.25m/s$$

$$x = ?? \rightarrow 0.75m/s$$

$$1cm \times 0.75m/s$$

$$x = \frac{1cm \times 0.75m/s}{0.25m/s}$$

x = 3cm

Be Smart ACADEMY

$\tau = 0.04s$; $V_2 = V_4 = V_6 = 0.75m/s$

5.Determine the average acceleration $a_{1,3}$ and $a_{3,5}$ between $M_1 \& M_3$ and between $M_3 \& M_5$

$$a_{1,3} = \frac{V_3 - V_1}{t_3 - t_1}$$

$$a_{1,3} = \frac{0.75 - 0.75}{3\tau - \tau}$$

$$a_{1.3} = 0 m / s^2$$

$$a_{3,5} = \frac{V_5 - V_3}{t_5 - t_3}$$

$$a_{3,5} = \frac{0.75 - 0.75}{3\tau - \tau}$$

$$a_{3,5}=0m/s^2$$

Be Smart ACADEMY

$\tau = 0.04s$; $V_2 = V_4 = V_6 = 0.75m/s$

6. Calculate the instantaneous acceleration a_3 , a_5 at M_3 and M_5 respectively.

$$\mathbf{a_3} = \frac{\mathbf{V_4} - \mathbf{V_2}}{\mathbf{t_4} - \mathbf{t_2}}$$

$$a_3 = \frac{0.75 - 0.75}{4\tau - 2\tau}$$

$$a_3 = 0 m / s^2$$

$$a_5 = \frac{V_6 - V_4}{t_6 - t_4}$$

$$a_5 = \frac{0.75 - 0.75}{6\tau - 4\tau}$$

$$a_5 = 0 m / s^2$$

